小學(xué)數(shù)學(xué)1—6年級(jí)必考的34個(gè)數(shù)學(xué)重難點(diǎn)公式,趕緊給孩子收藏!(一)
來(lái)源:好上學(xué) ??時(shí)間:2023-07-22
高考是一個(gè)是一場(chǎng)千軍萬(wàn)馬過(guò)獨(dú)木橋的戰(zhàn)役。面對(duì)高考,考生總是有很多困惑,什么時(shí)候開(kāi)始報(bào)名?高考體檢對(duì)報(bào)考專業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,好上學(xué)整理了小學(xué)數(shù)學(xué)1—6年級(jí)必考的34個(gè)數(shù)學(xué)重難點(diǎn)公式,趕緊給孩子收藏?。ㄒ唬┫嚓P(guān)信息,供考生參考,一起來(lái)看一下吧
小學(xué)數(shù)學(xué)1—6年級(jí)必考數(shù)學(xué)重難點(diǎn)公式 小學(xué)數(shù)學(xué)1——6年級(jí)必考的34個(gè)數(shù)學(xué)重難點(diǎn)公式,趕緊給孩子收藏!
1、和差倍問(wèn)題:
2、年齡問(wèn)題的三個(gè)基本特征:
①兩個(gè)人的年齡差是不變的; ②兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的; ③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;
3、歸一問(wèn)題的基本特點(diǎn):
問(wèn)題中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語(yǔ)來(lái)表示。
關(guān)鍵問(wèn)題: 根據(jù)題目中的條件確定并求出單一量;
4、植樹(shù)問(wèn)題:
5、雞兔同籠問(wèn)題:
基本概念: 雞兔同籠問(wèn)題又稱為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);
基本思路: ①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣): ②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少; ③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因; ④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式: ①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù)) ②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù)) 關(guān)鍵問(wèn)題:找出總量的差與單位量的差
6、盈虧問(wèn)題:
基本概念: 一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭俊?
基本思路: 先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量。
基本題型: ①一次有余數(shù),另一次不足; 基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差 ②當(dāng)兩次都有余數(shù); 基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差 ③當(dāng)兩次都不足; 基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn): 對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問(wèn)題: 確定對(duì)象總量和總的組數(shù)。
7、吃草問(wèn)題:
基本思路: 假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。
基本特點(diǎn): 原草量和新草生長(zhǎng)速度是不變的;
關(guān)鍵問(wèn)題: 確定兩個(gè)不變的量。
基本公式: 生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間); 總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量;
8、周期循環(huán)與數(shù)表規(guī)律:
周期現(xiàn)象: 事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期: 我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。
關(guān)鍵問(wèn)題: 確定循環(huán)周期。 閏 年:一年有366天; ①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除; 平 年:一年有365天。 ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
9、平均數(shù):
基本公式: ①平均數(shù)=總數(shù)量÷總份數(shù) 總數(shù)量=平均數(shù)×總份數(shù) 總份數(shù)=總數(shù)量÷平均數(shù) ②平均數(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法: ①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算. ②基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見(jiàn)基本公式②
10、抽屜原理:
抽屜原則一: 如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。 例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況: ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1 觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。
抽屜原則二: 如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有: ①k=[n/m ]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。 ②k=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。
理解知識(shí)點(diǎn): [X]表示不超過(guò)X的最大整數(shù)。 例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問(wèn)題: 構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
11、定義新運(yùn)算:
基本概念: 定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。
基本思路: 嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過(guò)程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問(wèn)題: 正確理解定義的運(yùn)算符號(hào)的意義。
注意事項(xiàng): ①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。 ②每個(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。
12、數(shù)列求和:
等差數(shù)列: 在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念: 首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示; 項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示; 公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示; 通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示; 數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路: 等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式: 通項(xiàng)公式:an = a1+(n-1)d; 通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差; 數(shù)列和公式:sn,= (a1+ an)×n÷2; 數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2; 項(xiàng)數(shù)公式:n= (an+ a1)÷d+1; 項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1; 公差公式:d =(an-a1))÷(n-1); 公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);
關(guān)鍵問(wèn)題: 確定已知量和未知量,確定使用的公式;
13、二進(jìn)制及其應(yīng)用:
十進(jìn)制: 用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。 =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100 注意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制: 用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。 (2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7 +……+A3×22+A2×21+A1×20 注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制: ①根據(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。 ②先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開(kāi)式特點(diǎn)即可寫出。
14、加法乘法原理和幾何計(jì)數(shù):
加法原理: 如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問(wèn)題: 確定作的分類方法。
基本特征: 每一種方法都可完成任務(wù)。
乘法原理: 如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。
關(guān)鍵問(wèn)題: 確定工作的完成步驟。
基本特征: 每一步只能完成任務(wù)的一部分。
直線: 一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線特點(diǎn): 沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度。
線段: 直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn): 有兩個(gè)端點(diǎn),有長(zhǎng)度。
射線: 把直線的一端無(wú)限延長(zhǎng)。
射線特點(diǎn): 只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。 ①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1); ②數(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1); ③數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù): ④數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
15、質(zhì)數(shù)與合數(shù):
質(zhì)數(shù): 一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。
合數(shù): 一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。
質(zhì)因數(shù): 如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù): 把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式: N= ,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1 求約數(shù)個(gè)數(shù)的公式: P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質(zhì)數(shù): 如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。
16、約數(shù)與倍數(shù):
約數(shù)和倍數(shù): 若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù): 幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。
最大公約數(shù)的性質(zhì): 1、 幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。 2、 幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。 3、 幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。 4、 幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。 例如:12的約數(shù)有1、2、3、4、6、12; 18的約數(shù)有:1、2、3、6、9、18; 那么12和18的公約數(shù)有:1、2、3、6; 那么12和18最大的公約數(shù)是:6,記作(12,18)=6;
求最大公約數(shù)基本方法: 1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。 2、短除法:先找公有的約數(shù),然后相乘。 3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。
公倍數(shù): 幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。 12的倍數(shù)有:12、24、36、48……; 18的倍數(shù)有:18、36、54、72……; 那么12和18的公倍數(shù)有:36、72、108……; 那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
最小公倍數(shù)的性質(zhì): 1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。 2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。 求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法
本文內(nèi)容綜合來(lái)源網(wǎng)絡(luò),課外輔導(dǎo)網(wǎng)編輯,如有侵權(quán),請(qǐng)及時(shí)聯(lián)系刪除。以上就是好上學(xué)為大家?guī)?lái)的小學(xué)數(shù)學(xué)1—6年級(jí)必考的34個(gè)數(shù)學(xué)重難點(diǎn)公式,趕緊給孩子收藏?。ㄒ唬M軒椭綇V大考生!
小學(xué)數(shù)學(xué)1—6年級(jí)必考數(shù)學(xué)重難點(diǎn)公式 小學(xué)數(shù)學(xué)1——6年級(jí)必考的34個(gè)數(shù)學(xué)重難點(diǎn)公式,趕緊給孩子收藏!
1、和差倍問(wèn)題:
2、年齡問(wèn)題的三個(gè)基本特征:
①兩個(gè)人的年齡差是不變的; ②兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的; ③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;
3、歸一問(wèn)題的基本特點(diǎn):
問(wèn)題中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語(yǔ)來(lái)表示。
關(guān)鍵問(wèn)題: 根據(jù)題目中的條件確定并求出單一量;
4、植樹(shù)問(wèn)題:
5、雞兔同籠問(wèn)題:
基本概念: 雞兔同籠問(wèn)題又稱為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);
基本思路: ①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣): ②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少; ③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因; ④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式: ①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù)) ②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù)) 關(guān)鍵問(wèn)題:找出總量的差與單位量的差
6、盈虧問(wèn)題:
基本概念: 一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭俊?
基本思路: 先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量。
基本題型: ①一次有余數(shù),另一次不足; 基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差 ②當(dāng)兩次都有余數(shù); 基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差 ③當(dāng)兩次都不足; 基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn): 對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問(wèn)題: 確定對(duì)象總量和總的組數(shù)。
7、吃草問(wèn)題:
基本思路: 假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。
基本特點(diǎn): 原草量和新草生長(zhǎng)速度是不變的;
關(guān)鍵問(wèn)題: 確定兩個(gè)不變的量。
基本公式: 生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間); 總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量;
8、周期循環(huán)與數(shù)表規(guī)律:
周期現(xiàn)象: 事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期: 我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。
關(guān)鍵問(wèn)題: 確定循環(huán)周期。 閏 年:一年有366天; ①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除; 平 年:一年有365天。 ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
9、平均數(shù):
基本公式: ①平均數(shù)=總數(shù)量÷總份數(shù) 總數(shù)量=平均數(shù)×總份數(shù) 總份數(shù)=總數(shù)量÷平均數(shù) ②平均數(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法: ①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算. ②基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見(jiàn)基本公式②
10、抽屜原理:
抽屜原則一: 如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。 例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況: ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1 觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。
抽屜原則二: 如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有: ①k=[n/m ]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。 ②k=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。
理解知識(shí)點(diǎn): [X]表示不超過(guò)X的最大整數(shù)。 例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問(wèn)題: 構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
11、定義新運(yùn)算:
基本概念: 定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。
基本思路: 嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過(guò)程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問(wèn)題: 正確理解定義的運(yùn)算符號(hào)的意義。
注意事項(xiàng): ①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。 ②每個(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。
12、數(shù)列求和:
等差數(shù)列: 在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念: 首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示; 項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示; 公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示; 通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示; 數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路: 等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式: 通項(xiàng)公式:an = a1+(n-1)d; 通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差; 數(shù)列和公式:sn,= (a1+ an)×n÷2; 數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2; 項(xiàng)數(shù)公式:n= (an+ a1)÷d+1; 項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1; 公差公式:d =(an-a1))÷(n-1); 公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);
關(guān)鍵問(wèn)題: 確定已知量和未知量,確定使用的公式;
13、二進(jìn)制及其應(yīng)用:
十進(jìn)制: 用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。 =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100 注意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制: 用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。 (2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7 +……+A3×22+A2×21+A1×20 注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制: ①根據(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。 ②先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開(kāi)式特點(diǎn)即可寫出。
14、加法乘法原理和幾何計(jì)數(shù):
加法原理: 如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問(wèn)題: 確定作的分類方法。
基本特征: 每一種方法都可完成任務(wù)。
乘法原理: 如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。
關(guān)鍵問(wèn)題: 確定工作的完成步驟。
基本特征: 每一步只能完成任務(wù)的一部分。
直線: 一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線特點(diǎn): 沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度。
線段: 直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn): 有兩個(gè)端點(diǎn),有長(zhǎng)度。
射線: 把直線的一端無(wú)限延長(zhǎng)。
射線特點(diǎn): 只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。 ①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1); ②數(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1); ③數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù): ④數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
15、質(zhì)數(shù)與合數(shù):
質(zhì)數(shù): 一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。
合數(shù): 一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。
質(zhì)因數(shù): 如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù): 把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式: N= ,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1 求約數(shù)個(gè)數(shù)的公式: P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質(zhì)數(shù): 如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。
16、約數(shù)與倍數(shù):
約數(shù)和倍數(shù): 若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù): 幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。
最大公約數(shù)的性質(zhì): 1、 幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。 2、 幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。 3、 幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。 4、 幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。 例如:12的約數(shù)有1、2、3、4、6、12; 18的約數(shù)有:1、2、3、6、9、18; 那么12和18的公約數(shù)有:1、2、3、6; 那么12和18最大的公約數(shù)是:6,記作(12,18)=6;
求最大公約數(shù)基本方法: 1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。 2、短除法:先找公有的約數(shù),然后相乘。 3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。
公倍數(shù): 幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。 12的倍數(shù)有:12、24、36、48……; 18的倍數(shù)有:18、36、54、72……; 那么12和18的公倍數(shù)有:36、72、108……; 那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
最小公倍數(shù)的性質(zhì): 1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。 2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。 求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法
本文內(nèi)容綜合來(lái)源網(wǎng)絡(luò),課外輔導(dǎo)網(wǎng)編輯,如有侵權(quán),請(qǐng)及時(shí)聯(lián)系刪除。以上就是好上學(xué)為大家?guī)?lái)的小學(xué)數(shù)學(xué)1—6年級(jí)必考的34個(gè)數(shù)學(xué)重難點(diǎn)公式,趕緊給孩子收藏?。ㄒ唬M軒椭綇V大考生!
標(biāo)簽:小學(xué)數(shù)學(xué)1—6年級(jí)必考的34個(gè)數(shù)學(xué)重難點(diǎn)公式,趕緊給孩子收藏?。ㄒ唬?/a>??