高二數(shù)學知識點有哪些?高二數(shù)學重難點有哪些?
來源:好上學 ??時間:2023-07-26
很多學生都會有這樣一個認知誤區(qū)就是:總結(jié)是文科的事情,理科多做多練就好了。然而結(jié)果恰恰是相反的,理科更需要同學們花費時間去整理以及總結(jié),數(shù)學也不例外。下面是給大家整理的一些高二數(shù)學知識點。
*
一、*概念
(1)*中元素的特征:確定性,互異性,無序性。
(2)常用數(shù)集的符號表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實數(shù)集。
(3)*的表示法:列舉法,描述法,韋恩圖。
(4)空集是指不含任何元素的*。
注意:空集是任何*的子集,是任何非空*的真子集。
函數(shù)
一、映射與函數(shù):
(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素::定義域A、值域C和對應(yīng)法則f
相同函數(shù)的判斷方法:①對應(yīng)法則;②定義域(兩點必須同時具備)
(1)函數(shù)解析式的求法:
?、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問題的定義域要分類討論;
?、趯τ趯嶋H問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。
(3)函數(shù)值域的求法:
?、倥浞椒?轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
?、軗Q元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
?、萑怯薪绶?轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;
⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;
?、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
?、鄶?shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。
三、函數(shù)的性質(zhì):
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導數(shù)法(適用于多項式函數(shù))
復合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復合函數(shù)法
應(yīng)用:把函數(shù)值進行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱
y=f(x)→y=-f(x),關(guān)于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;
五、反函數(shù):
(1)定義:一般地,設(shè)函數(shù)y=f(x)(x∈A)的值域是C,若找得到一個函數(shù)g(y)在每一處g(y)都等于x,這樣的函數(shù)x=?g(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù),記作y=f^(-1)(x)?。反函數(shù)y=f?^(-1)(x)的定義域、值域分別是函數(shù)y=f(x)的值域、定義域。最具有代表性的反函數(shù)就是對數(shù)函數(shù)與指數(shù)函數(shù)。
(2)函數(shù)存在反函數(shù)的條件:
(3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
七、常用的初等函數(shù):
(1)一元一次函數(shù):
(2)一元二次函數(shù):一般式、兩點式、頂點式
二次函數(shù)求最值問題:首先要采用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區(qū)間也固定。
(2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內(nèi),何時在區(qū)間之外。
(3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).
等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一個根
注意:若在閉區(qū)間討論方程有實數(shù)解的情況,可先利用在開區(qū)間上實根分布的情況,得出結(jié)果,在令和檢查端點的情況。
(3)反比例函數(shù):
反比例函數(shù)的圖像屬于以原點為對稱中心的中心對稱的雙曲線(hyperbola),反比例函數(shù)圖象中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(y≠0)。
一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=k/x?(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。因為y=k/x是一個分式,所以自變量X的取值范圍是X≠0。而y=k/x有時也被寫成xy=k或y=k·x^(-1)。表達式為:x是自變量,y是因變量,y是x的函數(shù)。
(4)指數(shù)函數(shù):
指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過點(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
(5)對數(shù)函數(shù):
對數(shù)函數(shù):y=(a>o,a≠1)圖象恒過點(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
以上就是高二數(shù)學知識點的部分內(nèi)容。那么高二數(shù)學怎么學?小編給大家推薦專注教育。
今天最后推薦的在線輔導平臺是專注教育——中小學網(wǎng)上*輔導,全國重點中學名師*家教補習!
以上就是好上學為大家?guī)淼母叨?shù)學知識點有哪些?高二數(shù)學重難點有哪些?,希望能幫助到廣大考生!