五年級數(shù)學下知識點匯總,五年級數(shù)學下有哪些重點知識?
來源:好上學 ??時間:2023-07-29
五年級數(shù)學不但進一步拓寬了數(shù)域-分數(shù),開始數(shù)的研究(整除等數(shù)論知識點),也由平面圖形轉(zhuǎn)到立體圖形。所以要求學生一定要利用好課堂時間,把知識點理解透徹,結(jié)合新舊知識點的聯(lián)系,弄清公式、法則的來龍去脈。下面是我整理的人教版五年級數(shù)學下冊知識點匯總,希望能幫到您!
第一單元 觀察物體(三)
1、 不同角度觀察一個物體 , 看到的面都是兩個或三個相鄰的面。
2、 不可能一次看到長方體或正方體相對的面。
注意點
1)這里所說的正面、左面和上面,都是相對于觀察者而言的。
2)站在任意一個位置,最多只能看到長方體的3個面。
3)從不同的位置觀察物體,看到的形狀可能是不同的。
4)從一個或兩個方向看到的圖形是不能確定立體圖形的形狀的。
5)同一角度觀察不同的立體圖形,得到的平面圖形可能是相同,也可能是不同的。
6)如果從物體的右面觀察,看到的不一定和從左面看到的完全相同。
第二單元 因數(shù)和倍數(shù)
1、整除:被除數(shù)、除數(shù)和商都是自然數(shù),并且沒有余數(shù)。
整數(shù)與自然數(shù)的關系:整數(shù)包括自然數(shù)。
2、因數(shù)、倍數(shù):大數(shù)能被小數(shù)整除時,大數(shù)是小數(shù)的倍數(shù),小數(shù)是大數(shù)的因數(shù)。
例:12是6的倍數(shù),6是12的因數(shù)。
(1)數(shù)a能被b整除,那么a就是b的倍數(shù),b就是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的,不能單獨存在。
(2)一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。
一個數(shù)的因數(shù)的求法:成對地按順序找。
(3)一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身。
一個數(shù)的倍數(shù)的求法:依次乘以自然數(shù)。
(4)2、3、5的倍數(shù)特征
1) 個位上是0,2,4,6,8的數(shù)都是2的倍數(shù)。
2)一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
3)個位上是0或5的數(shù),是5的倍數(shù)。
4)能同時被2、3、5整除(也就是2、3、5的倍數(shù))的最大的兩位數(shù)是90,最小的三位數(shù)是120。
同時滿足2、3、5的倍數(shù),實際是求2×3×5=30的倍數(shù)。
5)如果一個數(shù)同時是2和5的倍數(shù),那它的個位上的數(shù)字一定是0。
3、完全數(shù):除了它本身以外所有的因數(shù)的和等于它本身的數(shù)叫做完全數(shù)。
如:6的因數(shù)有:1、2、3(6除外),剛好1+2+3=6,所以6是完全數(shù),小的完全數(shù)有6、28等
4:自然數(shù)按能不能被2整除來分:奇數(shù)、偶數(shù)。
奇數(shù):不能被2整除的數(shù)。叫奇數(shù)。也就是個位上是1、3、5、7、9的數(shù)。
偶數(shù):能被2整除的數(shù)叫偶數(shù)(0也是偶數(shù)),也就是個位上是0、2、4、6、8的數(shù)。
最小的奇數(shù)是1,最小的偶數(shù)是0.
關系: 奇數(shù)+、- 偶數(shù)=奇數(shù)
奇數(shù)+、- 奇數(shù)=偶數(shù)
偶數(shù)+、-偶數(shù)=偶數(shù)。
5、自然數(shù)按因數(shù)的個數(shù)來分:質(zhì)數(shù)、合數(shù)、1、0四類.
質(zhì)數(shù)(或素數(shù)):只有1和它本身兩個因數(shù)。
合數(shù):除了1和它本身還有別的因數(shù)(至少有三個因數(shù):1、它本身、別的因數(shù))。
1: 只有1個因數(shù)?!?”既不是質(zhì)數(shù),也不是合數(shù)。
最小的質(zhì)數(shù)是2,最小的合數(shù)是4,連續(xù)的兩個質(zhì)數(shù)是2、3。
每個合數(shù)都可以由幾個質(zhì)數(shù)相乘得到,質(zhì)數(shù)相乘一定得合數(shù)。
20以內(nèi)的質(zhì)數(shù):有8個(2、3、5、7、11、13、17、19)
100以內(nèi)的質(zhì)數(shù)有25個:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以內(nèi)找質(zhì)數(shù)、合數(shù)的技巧:
看是否是2、3、5、7、11、13…的倍數(shù),是的就是合數(shù),不是的就是質(zhì)數(shù)。
關系:奇數(shù)×奇數(shù)=奇數(shù)
質(zhì)數(shù)×質(zhì)數(shù)=合數(shù)
6、最大、最小
A的最小因數(shù)是:1;
A的最大因數(shù)是:A;
A的最小倍數(shù)是:A;
最小的自然數(shù)是:0;
最小的奇數(shù)是:1;
最小的偶數(shù)是:0;
最小的質(zhì)數(shù)是:2;
最小的合數(shù)是:4;
7、分解質(zhì)因數(shù):把一個合數(shù)分解成多個質(zhì)數(shù)相乘的形式。
用短除法分解質(zhì)因數(shù) (一個合數(shù)寫成幾個質(zhì)數(shù)相乘的形式)。
比如:30分解質(zhì)因數(shù)是:(30=2×3×5)
8、互質(zhì)數(shù):公因數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù)。
兩個質(zhì)數(shù)的互質(zhì)數(shù):5和7
兩個合數(shù)的互質(zhì)數(shù):8和9
一質(zhì)一合的互質(zhì)數(shù):7和8
兩數(shù)互質(zhì)的特殊情況:
?、?和任何自然數(shù)互質(zhì);
?、葡噜弮蓚€自然數(shù)互質(zhì);
⑶兩個質(zhì)數(shù)一定互質(zhì);
?、?和所有奇數(shù)互質(zhì);
?、少|(zhì)數(shù)與比它小的合數(shù)互質(zhì);
9、公因數(shù)、最大公因數(shù)
幾個數(shù)公有的因數(shù)叫這些數(shù)的公因數(shù)。其中最大的那個就叫它們的最大公因數(shù)。
用短除法求兩個數(shù)或三個數(shù)的最大公因數(shù) (除到互質(zhì)為止,把所有的除數(shù)連乘起來)
幾個數(shù)的公因數(shù)只有1,就說這幾個數(shù)互質(zhì)。
如果兩數(shù)是倍數(shù)關系時,那么較小的數(shù)就是它們的最大公因數(shù)。
如果兩數(shù)互質(zhì)時,那么1就是它們的最大公因數(shù)。
10、公倍數(shù)、最小公倍數(shù)
幾個數(shù)公有的倍數(shù)叫這些數(shù)的公倍數(shù)。其中最小的那個就叫它們的最小公倍數(shù)。
用短除法求兩個數(shù)的最小公倍數(shù)(除到互質(zhì)為止,把所有的除數(shù)和商連乘起來)
用短除法求三個數(shù)的最小公倍數(shù)(除到兩兩互質(zhì)為止,把所有的除數(shù)和商連乘起來)
如果兩數(shù)是倍數(shù)關系時,那么較大的數(shù)就是它們的最小公倍數(shù)。
如果兩數(shù)互質(zhì)時,那么它們的積就是它們的最小公倍數(shù)。
11、求最大公因數(shù)和最小公倍數(shù)方法
用12和16來舉例
1、求法一:(列舉求同法)
最大公因數(shù)的求法:
12的因數(shù)有:1、12、2、6、3、4
16的因數(shù)有:1、16、2、8、4
最大公因數(shù)是4
最小公倍數(shù)的求法:
12的倍數(shù)有:12、24、36、48、…
16的倍數(shù)有:16、32、48、…
最小公倍數(shù)是48
2、求法二:(分解質(zhì)因數(shù)法)
12=2×2×3
16=2×2×2×2
最大公因數(shù)是:
2×2=4(相同乘)
最小公倍數(shù)是:
2×2×3×2×2= 48(相同乘×不同乘)
第三單元 長方體和正方體
1、由6個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫做長方體。兩個面相交的邊叫做棱。三條棱相交的點叫做頂點。相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
長方體特點:
(1)有6個面,8個頂點,12條棱,相對的面的面積相等,相對的棱的長度相等。
(2)一個長方體最多有6個面是長方形,最少有4個面是長方形,最多有2個面是正方形。
2、由6個完全相同的正方形圍成的立體圖形叫做正方體(也叫做立方體)。
正方體特點:
(1)正方體有12條棱,它們的長度都相等。
(2)正方體有6個面,每個面都是正方形,每個面的面積都相等。
(3)正方體可以說是長、寬、高都相等的長方體,它是一種特殊的長方體。
長方體、正方體
相同點:
都有6個面,12條棱,8個頂點。
不同點:
長方體
6個面都是長方形。
(有可能有兩個相對的面是正方形)。
相對的棱的長度都相等
正方體
6個面都是正方形。
12條棱都相等。
3、長方體、正方體有關棱長計算公式:
長方體的棱長總和=(長+寬+高)×4=長×4+寬×4+高×4
L=(a+b+h)×4
長=棱長總和÷4-寬 -高
a=L÷4-b-h
寬=棱長總和÷4-長 -高
b=L÷4-a-h
高=棱長總和÷4-長 -寬
h=L÷4-a-b
正方體的棱長總和=棱長×12
L=a×12
正方體的棱長=棱長總和÷12
a=L÷12
4、長方體或正方體6個面和總面積叫做它的表面積。
長方體的表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
無底(或無蓋)
長方體表面積= 長×寬+(長×高+寬×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
無底又無蓋長方體表面積=(長×高+寬×高)×2
S=2(ah+bh)
正方體的表面積=棱長×棱長×6 S=a×a×6 用字母表示:S= 6a2
生活實際:
油箱、罐頭盒等都是6個面
游泳池、魚缸等都只有5個面
水管、煙囪等都只有4個面。
注意1:用刀分開物體時,每分一次增加兩個面。(表面積相應增加)
注意2:長方體或正方體的長、寬、高同時擴大幾倍,表面積會擴大倍數(shù)的平方倍。
(如長、寬、高各擴大2倍,表面積就會擴大到原來的4倍)。
5、物體所占空間的大小叫做物體的體積。
長方體的體積=長×寬×高 V=abh
長=體積÷寬÷高 a=V÷b÷h
寬=體積÷長÷高 b=V÷a÷h
高=體積÷長÷寬 h= V÷a÷b
正方體的體積=棱長×棱長×棱長
V=a×a×a = a3
讀作“a的立方”表示3個a相乘,(即a·a·a)
長方體或正方體底面的面積叫做底面積。
長方體(或正方體)的體積=底面積×高
用字母表示:V=S h(橫截面積相當于底面積,長相當于高)。
注意:一個長方體和一個正方體的棱長總和相等,但體積不一定相等。
6、箱子、油桶、倉庫等所能容納物體的體積,通常叫做他們的容積。
固體一般就用體積單位,計量液體的體積,如水、油等。
常用的容積單位有升和毫升也可以寫成L和ml。
1升=1立方分米
1毫升=1立方厘米
1升=1000毫升
(1L = 1dm3 1ml = 1cm3)
長方體或正方體容器容積的計算方法,跟體積的計算方法相同。
但要從容器里面量長、寬、高。(所以,對于同一個物體,體積大于容積。)
注意:長方體或正方體的長、寬、高同時擴大幾倍,體積就會擴大倍數(shù)的立方倍。
(如長、寬、高各擴大2倍,體積就會擴大到原來的8倍)。
*形狀不規(guī)則的物體可以用排水法求體積,形狀規(guī)則的物體可以用公式直接求體積。
排水法的公式:
V物體 =V現(xiàn)在-V原來
也可以 V物體 =S×(h現(xiàn)在- h原來)
V物體 =S×h升高
8、【體積單位換算】
大單位×進率=小單位
小單位÷進率=大單位
進率:1立方米=1000立方分米=1000000立方厘米(立方相鄰單位進率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公頃=1000000平方米
注意:長方體與正方體關系
把長方體或正方體截成若干個小長方體(或正方體)后,表面積增加了,體積不變。
重量單位進率,時間單位進率,長度單位進率
大單位×進率=小單位
小單位÷進率=大單位
長度單位:
1千米 =1000 米 1 分米=10 厘米
1厘米=10毫米 1分米=100毫米
1米=10分米=100厘米=1000毫米
(相鄰單位進率10)
面積單位:
1平方千米=100公頃
1平方米=100平方分米
1平方分米=100平方厘米
1公頃=10000平方米(平方相鄰單位進率100)
質(zhì)量單位:
1噸=1000千克
1千克=1000克
人民幣:
1元=10角 1角=10分 1元=100分
以上是五年級數(shù)學下前三章的內(nèi)容,其中包含了五年級數(shù)學下的重點內(nèi)容,因數(shù)與倍數(shù),正方體與長方體,后續(xù)內(nèi)容會擇日繼續(xù)推送的,請各位繼續(xù)關注小編。
今天最后推薦的在線輔導平臺是專注教育——中小學網(wǎng)上*輔導,全國重點中學名師*家教補家教補習。
以上就是好上學為大家?guī)淼奈迥昙墧?shù)學下知識點匯總,五年級數(shù)學下有哪些重點知識?,希望能幫助到廣大考生!