九年級數(shù)學(xué)上冊知識點有什么,九年級上冊知識點總結(jié)
來源:好上學(xué) ??時間:2023-07-29
對于進入了九年級和即將進入九年級的同學(xué)們來說,要做的第一件事就是要了解,九年級學(xué)什么。就拿數(shù)學(xué)來說,九年級數(shù)學(xué)上冊知識點有什么?
第一章 二次根式
1 二次根式:形如 ( )的式子為二次根式;
性質(zhì):( )是一個非負數(shù);
2 二次根式的乘除:
3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。
4 海倫-秦九韶公式:S是三角形的面積,p為 。
第二章 一元二次方程
1 一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。
2 一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
公式法:
因式分解法:左邊是兩個因式的乘積,右邊為零。
3 一元二次方程在實際問題中的應(yīng)用
4 韋達定理:設(shè) 是方程 的兩個根,那么有
第三章 旋轉(zhuǎn)
1 圖形的旋轉(zhuǎn)
旋轉(zhuǎn):一個圖形繞某一點轉(zhuǎn)動一個角度的圖形變換
性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
對應(yīng)點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角
旋轉(zhuǎn)前后的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉(zhuǎn)180度,和另一個圖形重合,則兩個圖形關(guān)于這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3 關(guān)于原點對稱的點的坐標
第四章 圓
1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2 垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5 點和圓的位置關(guān)系
點在圓外 d>r
點在圓上 d=r
點在圓內(nèi) d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經(jīng)過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關(guān)系
相交 d
相切 d=r
相離 d>r
切線的性質(zhì)定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點,為三角形的內(nèi)心。
7 圓和圓的位置關(guān)系
外離 d>R+r
外切 d=R+r
相交 R-r
內(nèi)切 d=R-r
內(nèi)含 d
8 正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9 弧長和扇形面積
弧長
扇形面積:
10 圓錐的側(cè)面積和全面積
側(cè)面積:
全面積
11 (附加)相交弦定理、切割線定理
第五章 概率初步
1 概率意義:在大量重復(fù)試驗中,事件A發(fā)生的頻率 穩(wěn)定在某個常數(shù)p附近,則常數(shù)p叫做事
件A的概率。
2 用列舉法求概率
一般的,在一次試驗中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=
3 用頻率去估計概率
以上就是九年級數(shù)學(xué)上冊知識點匯總,希望對你有所幫助。相信數(shù)學(xué)成績暫時不好的同學(xué)都會去尋求在線輔導(dǎo)平臺的幫助,那么,好的在線輔導(dǎo)平臺有哪些?
今天最后推薦的在線輔導(dǎo)平臺是專注教育——中小學(xué)網(wǎng)上*輔導(dǎo),全國重點中學(xué)名師*家教補家教補習(xí)!
以上就是好上學(xué)為大家?guī)淼木拍昙墧?shù)學(xué)上冊知識點有什么,九年級上冊知識點總結(jié),希望能幫助到廣大考生!